Busque entre los 166288 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2020-03-09T13:13:08Z | |
dc.date.available | 2020-03-09T13:13:08Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/90453 | |
dc.description.abstract | Quality flaws prediction in Wikipedia is an ongoing research trend. In particular, in this work we tackle the problem of automatically assessing the need of including additional citations for contributing to verify the articles’ content; the so-called Refimprove quality flaw. This information quality flaw, ranks among the five most frequent flaws and represents 12.4% of the flawed articles in the English Wikipedia. Underbagged decision trees, biased-SVM, and centroid-based balanced SVM –three different state-of-the-art approaches– were evaluated, with the aim of handling the existing imbalances between the number of articles’ tagged as flawed content, and the remaining untagged documents that exist in Wikipedia, which can help in the learning stage of the algorithms. Also, a uniformly sampled balanced SVM classifier was evaluated as a baseline. The results showed that under-bagged decision trees with the min rule as aggregation method, perform best achieving an F1 score of 0.96 on the test corpus from the 1st International Competition on Quality Flaw Prediction in Wikipedia; a well-known uniform evaluation corpus from this research field. Likewise, biased-SVM also achieved an F1 score that outperform previously published results. | en |
dc.format.extent | 42-51 | es |
dc.language | en | es |
dc.subject | Wikipedia | es |
dc.subject | Information Quality | es |
dc.subject | Quality Flaws Prediction | es |
dc.subject | Refimprove Flaw | es |
dc.title | Automatically Assessing the Need of Additional Citations for Information Quality Verification in Wikipedia Articles | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.isbn | 978-987-688-377-1 | es |
sedici.creator.person | Bazán Pereyra, Gerónimo | es |
sedici.creator.person | Cuello, Carolina | es |
sedici.creator.person | Capodici, Gianfranco | es |
sedici.creator.person | Jofré, Vanessa | es |
sedici.creator.person | Ferretti, Edgardo | es |
sedici.creator.person | Errecalde, Marcelo Luis | es |
sedici.description.note | II Track de Gobierno Digital y Ciudades Inteligentes. | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.date.exposure | 2019-10 | |
sedici.relation.event | XXV Congreso Argentino de Ciencias de la Computación (CACIC 2019, Universidad Nacional de Río Cuarto). | es |
sedici.description.peerReview | peer-review | es |
sedici.relation.isRelatedWith | http://sedici.unlp.edu.ar/handle/10915/90359 | es |