Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-03-09T13:25:35Z
dc.date.available 2020-03-09T13:25:35Z
dc.date.issued 2019
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/90457
dc.description.abstract Advances in convolutional neural networks have made possible significant improvements in the state-of-the-art in image classification. However, their success on a particular field rests on the possibility of obtaining labeled data to train networks. Handshape recognition from images, an important subtask of both gesture and sign language recognition, suffers from such a lack of data. Furthermore, hands are highly deformable objects and therefore handshape classification models require larger datasets. We analyze both state of the art models for image classification, as well as data augmentation schemes and specific models to tackle problems with small datasets. In particular, we perform experiments with Wide- DenseNet, a state of the art convolutional architecture and Prototypical Networks, a state of the art few-shot learning meta model. In both cases, we also quantify the impact of data augmentation on accuracy. Our results show that on small and simple data sets such as CIARP, all models and variations of achieve perfect accuracy, and therefore the utility of the data is highly doubtful, despite its having 6000 samples. On the other hand, in small but complex datasets such as LSA16 (800 samples), specialized methods such as Prototypical Networks do have an advantage over other methods. On RWTH, another complex and small dataset with close to 4000 samples, a traditional and state-of-the-art method such as Wide-DenseNet surpasses all other models. Also, data augmentation consistently increases accuracy for Wide-DenseNet, but not fo Prototypical Networks. en
dc.format.extent 105-114 es
dc.language en es
dc.subject Sign Language es
dc.subject Hand Shape Recognition es
dc.subject Convolutional Neural Networks es
dc.subject Densenet es
dc.subject Prototypical Networks es
dc.subject Small Datasets es
dc.title Recognizing Handshapes using Small Datasets en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-987-688-377-1 es
sedici.creator.person Cornejo Fandos, Ulises Jeremias es
sedici.creator.person Ríos, Gastón Gustavo es
sedici.creator.person Ronchetti, Franco es
sedici.creator.person Quiroga, Facundo es
sedici.creator.person Hasperué, Waldo es
sedici.creator.person Lanzarini, Laura Cristina es
sedici.description.note XX Workshop de Agentes y Sistemas inteligentes. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2019-10
sedici.relation.event XXV Congreso Argentino de Ciencias de la Computación (CACIC 2019, Universidad Nacional de Río Cuarto) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/90359 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)