Busque entre los 166596 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2020-03-10T12:10:51Z | |
dc.date.available | 2020-03-10T12:10:51Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/90534 | |
dc.description.abstract | The increasing use of social media allows the extraction of valuable information to early prevent some risks. Such is the case of the use of blogs to early detect people with signs of depression. In order to address this problem, we describe k-temporal variation of terms (k-TVT), a method which uses the variation of vocabulary along the different time steps as concept space to represent the documents. An interesting particularity of this approach is the possibility of setting a parameter (the k value) depending on the urgency (earliness) level required to detect the risky (depressed) cases. Results on the early detection of depression data set from eRisk 2017 seem to confirm the robustness of k-TVT for different urgency levels using SVM as classifier. Besides, some recent results on an extension of this collection would confirm the effectiveness of k-TVT as one of the state-of-the-art methods for early depression detection. | en |
dc.format.extent | 547-556 | es |
dc.language | en | es |
dc.subject | Early Risk Prediction | es |
dc.subject | Early Depression Detection | es |
dc.subject | Text Representation | es |
dc.subject | Semantic Analysis Techniques | es |
dc.subject | Temporal Variation of Terms | es |
dc.title | k-TVT: a flexible and effective method for early depression detection | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.isbn | 978-987-688-377-1 | es |
sedici.creator.person | Cagnina, Leticia | es |
sedici.creator.person | Errecalde, Marcelo Luis | es |
sedici.creator.person | Garciarena Ucelay, María José | es |
sedici.creator.person | Funez, Dario G. | es |
sedici.creator.person | Villegas, María Paula | es |
sedici.description.note | XVI Workshop Bases de Datos y Minería de Datos. | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.date.exposure | 2019-10 | |
sedici.relation.event | XXV Congreso Argentino de Ciencias de la Computación (CACIC) (Universidad Nacional de Río Cuarto, Córdoba, 14 al 18 de octubre de 2019) | es |
sedici.description.peerReview | peer-review | es |
sedici.relation.isRelatedWith | http://sedici.unlp.edu.ar/handle/10915/90359 | es |