Busque entre los 166288 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2020-03-10T13:55:42Z | |
dc.date.available | 2020-03-10T13:55:42Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/90565 | |
dc.description.abstract | In this paper we describe the main ensemble learning techniques and their application in the cybersecurity threats detection. The state of the art in the use of ensemble learning techniques is presented here as an alternative to the current intrusion detection mechanisms, analyzing their advantages and disadvantages. We propose to incorporate ensemble learning to SLIPS [3], a behavioral-based intrusion detection and prevention system that uses machine learning algorithms to detect malicious behaviors, to obtain better results, taking advantage of the benefits of the SLIPS classifiers and modules. As part of this work we extend ensembling by considering algorithms from different domains (not machine learning domains), as Thread Intelligence. As a first stage of this project, performance tests of ensemble learning algorithms were performed to detect malware from flows evaluating its accuracy. The results of these tests are presented here, as well as the conclusions obtained and the future work. | es |
dc.format.extent | 1251-1260 | es |
dc.language | en | es |
dc.subject | Ensemble leaming | es |
dc.subject | Cybersecurity | es |
dc.subject | Malware / spyware crime | es |
dc.subject | Intrusion detection systems | es |
dc.title | Ensembling to improve infected hosts detection | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.isbn | 978-987-688-377-1 | es |
sedici.creator.person | Venosa, Paula | es |
sedici.creator.person | García, Sebastián | es |
sedici.creator.person | Díaz, Francisco Javier | es |
sedici.description.note | VIII Workshop Seguridad informática. | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.date.exposure | 2019-10 | |
sedici.relation.event | XXV Congreso Argentino de Ciencias de la Computación (CACIC) (Universidad Nacional de Río Cuarto, Córdoba, 14 al 18 de octubre de 2019) | es |
sedici.description.peerReview | peer-review | es |
sedici.relation.isRelatedWith | http://sedici.unlp.edu.ar/handle/10915/90359 | es |