Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-03-17T20:07:38Z
dc.date.available 2020-03-17T20:07:38Z
dc.date.issued 2019
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/91042
dc.description.abstract Psychologists have used tests or carefully designed survey questions, such as Beck’s Depression Inventory (BDI), to identify the presence of depression and to assess its severity level. On the other hand, methods for automatic depression detection have gained increasing interest since all the information available in social media, such as Twitter and Facebook, enables novel measurement based on language use. These methods learn to characterize depression through natural language use and have shown that, in fact, language usage can provide strong evidence in detecting depressive people. However, not much attention has been paid to measuring finer grain relationships between both aspects, such as how is connected the language usage with the severity level of depression. The present study is a first step towards that direction. First, we train a binary text classifier to detect “depressed” users and then we use its confidence values to estimate the user’s clinical depression level. In order to do that, our system has to fill the standard BDI depression questionnaire on users’ behalf, based only on the text of users’ postings. Our proposal, publicly tested in the eRisk 2019 T3 task, obtained promising results. This offers very interesting evidence of the potential of our method to estimate the level of depression directly form user’s posts in social media. en
dc.format.extent 577-588 es
dc.language en es
dc.subject Text Classification es
dc.subject Depression Level Estimation es
dc.subject Beck’s Depression Inventory es
dc.subject SS3 es
dc.subject CLEF eRisk 2019 es
dc.subject Reddit es
dc.title Towards Measuring the Severity of Depression in Social Media via Text Classification en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-987-688-377-1 es
sedici.creator.person Burdisso, Sergio es
sedici.creator.person Errecalde, Marcelo Luis es
sedici.creator.person Montes y Gómez, Manuel es
sedici.description.note XVI Workshop Bases de Datos y Minería de Datos. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2019-10
sedici.relation.event XXV Congreso Argentino de Ciencias de la Computación (CACIC) (Universidad Nacional de Río Cuarto, Córdoba, 14 al 18 de octubre de 2019) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/90359 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)