Upload resources

Upload your works to SEDICI to increase its visibility and improve its impact

 

Show simple item record

dc.date.accessioned 2020-04-15T14:56:41Z
dc.date.available 2020-04-15T14:56:41Z
dc.date.issued 2013
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/93429
dc.description.abstract In this work, we present a method for signal-to-noise ratio maximization using a linear filter based on minor component analysis of the noise covariance matrix. As we will see, the greatest benefits are obtained when both filter and signal design are treated as a single problem. This general problem is then related to the minimization of the probability of error of a digital communication. In particular, the classical binary detection problem is considered when nonstationary and (possibly) nonwhite additive Gaussian noise is present. Two algorithms are given to solve the problem at hand with cuadratic and linear computational complexity with respect to the dimension of the problem. en
dc.format.extent 163-174 es
dc.language en es
dc.subject Minor Component Analysis es
dc.subject Matched Filter es
dc.subject Optimal Signal Design es
dc.subject Binary Detection es
dc.subject Adaptive Algorithms es
dc.title Adaptive MCA-Matched Filter Algorithms for Binary Detection en
dc.type Objeto de conferencia es
sedici.identifier.issn 1850-2806 es
sedici.creator.person Messina, Francisco es
sedici.creator.person Cernuschi-Frías, Bruno es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2013-09
sedici.relation.event XIV Argentine Symposium on Technology (AST) - JAIIO 42 (2013) es
sedici.description.peerReview peer-review es


Download Files

This item appears in the following Collection(s)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Except where otherwise noted, this item's license is described as Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)