Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-04-16T14:25:31Z
dc.date.available 2020-04-16T14:25:31Z
dc.date.issued 2012-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/93530
dc.description.abstract The reader can find in the literature a lot of different techniques to study the dynamics of a given system and also, many suitable numerical integrators to compute them. Notwithstanding the recent work of Maffione et al. (2011a) for mappings, a detailed comparison among the widespread indicators of chaos in a general system is still lacking. Such a comparison could lead to select the most efficient algorithms given a certain dynamical problem. Furthermore, in order to choose the appropriate numerical integrators to compute them, more comparative studies among numerical integrators are also needed. This work deals with both problems. We first extend the work of Maffione et al. (2011) for mappings to the 2D H\'enon & Heiles (1964) potential, and compare several variational indicators of chaos: the Lyapunov Indicator (LI); the Mean Exponential Growth Factor of Nearby Orbits (MEGNO); the Smaller Alignment Index (SALI) and its generalized version, the Generalized Alignment Index (GALI); the Fast Lyapunov Indicator (FLI) and its variant, the Orthogonal Fast Lyapunov Indicator (OFLI); the Spectral Distance (D) and the Dynamical Spectras of Stretching Numbers (SSNs). We also include in the record the Relative Lyapunov Indicator (RLI), which is not a variational indicator as the others. Then, we test a numerical technique to integrate Ordinary Differential Equations (ODEs) based on the Taylor method implemented by Jorba & Zou (2005) (called taylor), and we compare its performance with other two well-known efficient integrators: the Prince & Dormand (1981) implementation of a Runge-Kutta of order 7-8 (DOPRI8) and a Bulirsch-St\"oer implementation. These tests are run under two very different systems from the complexity of their equations point of view: a triaxial galactic potential model and a perturbed 3D quartic oscillator. en
dc.format.extent 1-35 es
dc.language en es
dc.subject Chaos indicators es
dc.subject Hamiltonian sytems es
dc.subject Numerical integrators es
dc.subject ODES es
dc.subject Variational equations es
dc.title Comparative study of variational chaos indicators and ODEs' numerical integrators en
dc.type Articulo es
sedici.identifier.uri http://www.worldscientific.com/doi/abs/10.1142/S0218127412300339 es
sedici.identifier.other http://dx.doi.org/10.1142/S0218127412300339 es
sedici.identifier.other hdl:11336/42610 es
sedici.identifier.issn 0218-1274 es
sedici.creator.person Darriba, Luciano Ariel es
sedici.creator.person Maffione, Nicolás Pablo es
sedici.creator.person Cincotta, Pablo Miguel es
sedici.creator.person Giordano, Claudia Marcela es
sedici.subject.materias Ciencias Astronómicas es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Astrofísica de La Plata es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle International Journal of Bifurcation and Chaos es
sedici.relation.journalVolumeAndIssue vol. 22 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)