Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-04-20T20:07:59Z
dc.date.available 2020-04-20T20:07:59Z
dc.date.issued 2014-01
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/93845
dc.description.abstract We present theoretical and numerical results pointing towards a strong connection between the estimates for the diffusion rate along simple resonances in multidimensional nonlinear Hamiltonian systems that can be obtained using the heuristic theory of Chirikov and a more formal one due to Nekhoroshev. We show that, despite a wide-spread impression, the two theories are complementary rather than antagonist. Indeed, although Chirikov’s 1979 review has thousands of citations, almost all of them refer to topics such as the resonance overlap criterion, fast diffusion, the Standard or Whisker Map, and not to the constructive theory providing a formula to measure diffusion along a single resonance. However, as will be demonstrated explicitly below, Chirikov’s formula provides values of the diffusion coefficient which are quite well comparable to the numerically computed ones, provided that it is implemented on the so-called optimal normal form derived as in the analytic part of Nekhoroshev’s theorem. On the other hand, Chirikov’s formula yields unrealistic values of the diffusion coefficient, in particular for very small values of the perturbation, when used in the original Hamiltonian instead of the optimal normal form. In the present paper, we take advantage of this complementarity in order to obtain accurate theoretical predictions for the local value of the diffusion coefficient along a resonance in a specific 3DoF nearly integrable Hamiltonian system. Besides, we compute numerically the diffusion coefficient and a full comparison of all estimates is made for ten values of the perturbation parameter, showing a very satisfactory agreement. en
dc.format.extent 49-64 es
dc.language en es
dc.subject Chaos es
dc.subject Instability es
dc.subject Dynamics es
dc.subject Arnold diffusion es
dc.title Chirikov and Nekhoroshev diffusion estimates en
dc.type Articulo es
sedici.identifier.uri http://www.sciencedirect.com/science/article/pii/S0167278913002819 es
sedici.identifier.uri https://arxiv.org/abs/1310.3158 es
sedici.identifier.other http://dx.doi.org/10.1016/j.physd.2013.10.005 es
sedici.identifier.other hdl:11336/15512 es
sedici.identifier.issn 0167-2789 es
sedici.title.subtitle Bridging the two sides of the river en
sedici.creator.person Cincotta, Pablo Miguel es
sedici.creator.person Efthymiopoulos, C. es
sedici.creator.person Giordano, Claudia Marcela es
sedici.creator.person Mestre, Martín Federico es
sedici.subject.materias Astronomía es
sedici.subject.materias Física es
sedici.subject.materias Ciencias Naturales es
sedici.subject.materias Ciencias Exactas es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Astrofísica de La Plata es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Physica D - Nonlinear Phenomena es
sedici.relation.journalVolumeAndIssue vol. 266 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)