Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-05-07T19:49:20Z
dc.date.available 2020-05-07T19:49:20Z
dc.date.issued 2016-07
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/95348
dc.description.abstract This article presents the effect of oxidation temperature on shape anisotropy, phase purity and growth of core-shell heterostructures and consequently their effect on structure-property relationships. Iron oxide and Au-iron oxide nanocomposites were synthesized by a thermal decomposition method by passing pure oxygen at different temperatures (125-250 °C). The prepared nanoparticles were surface functionalized by organic molecules; the presence of the organic canopy prevented both direct particle contact as well as further oxidation, resulting in the stability of the nanoparticles. We have observed a systematic improvement in the core and shell shape through tuning the reaction time as well as the oxidizing temperatures. Spherical and spherical triangular shaped core-shell structures have been obtained at an optimum oxidation temperature of 125 °C and 150 °C for 30 minutes. However, further increase in the temperature as well as oxidation time results in core-shell structure amendment and results in fully grown core-shell heterostructures. As stability and ageing issues limit the use of nanoparticles in applications, to ensure the stability of the prepared iron oxide nanoparticles we performed XRD analysis after more than a year and they remained intact showing no ageing effect. Specific absorption rate values useful for magnetic fluid hyperthermia were obtained for two samples on the basis of detailed characterization using X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer spectroscopy, and dc-magnetization experiments. en
dc.format.extent 70394-70404 es
dc.language en es
dc.subject Multifunctional nanoparticles es
dc.subject Iron-oxide es
dc.subject Magnetism es
dc.subject Superparamagnetism es
dc.subject Nano-materiales es
dc.subject Nanotecnología es
dc.title Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles en
dc.type Articulo es
sedici.identifier.uri https://ri.conicet.gov.ar/11336/70904 es
sedici.identifier.uri https://pubs.rsc.org/en/Content/ArticleLanding/2016/RA/C6RA15610J#!divAbstract es
sedici.identifier.other http://dx.doi.org/10.1039/C6RA15610J es
sedici.identifier.other hdl:11336/70904 es
sedici.identifier.issn 2046-2069 es
sedici.creator.person Sarveena es
sedici.creator.person Muraca, Diego es
sedici.creator.person Mendoza Zélis, Pedro es
sedici.creator.person Javed, Y. es
sedici.creator.person Ahmad, N. es
sedici.creator.person Vargas, J. M. es
sedici.creator.person Moscoso Londoño, O. es
sedici.creator.person Knobel, M. es
sedici.creator.person Singh, M. es
sedici.creator.person Sharma, S.K. es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Física La Plata es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle RSC Advances es
sedici.relation.journalVolumeAndIssue vol. 6, no. 74 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)