Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2008-05-22T17:02:50Z
dc.date.available 2008-05-22T03:00:00Z
dc.date.issued 2007-04
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/9536
dc.description.abstract Segmentation in biological images is essential for the determination of biological parameters that allow the construction of models of several biological problems. This helps to establish clear relationships between those models and the parameter estimation, and for elaboration of key experiments that give support to biological theories. Segmentation is the process of qualitative or quantitative information extraction (shape, texture, physical and geometric properties, among others). These quantities are needed to compute the biological descriptors for further classification (v.g., cell counting, development stage assessment, and many others). This process is almost always supervised (i.e., human assisted), since the quality of the images that are produced with classic microscopy technologies have defects that in general disallow the application of unsupervised segmentation techniques. In this paper we investigate the use of the a local fractal dimension estimation as an image descriptor for microscopy images. This local descriptor appears to be robust enough to perform unsupervised or semisupervised segmentations, specifically in our study. We applied this technique on microscopy images of amphibian embryos' skin in which, using immunofluorescence techniques, we have labeled the cell adhesion molecule E-Cadherin. This molecule is one of the key factors of the Ca2+- dependent cell-cell adhesion. Segmentation of the cellular outlines was performed using a processing workflow, which can be repeatedly applied to a set of similar images, from which information is extracted for characterization and eventual quantification purposes. en
dc.format.extent 105-111 es
dc.language en es
dc.subject IMAGE PROCESSING AND COMPUTER VISION es
dc.subject Segmentation es
dc.subject Fractals es
dc.title Cellular outline segmentation using fractal estimators en
dc.type Articulo es
sedici.identifier.uri http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Mar07-17.pdf es
sedici.identifier.issn 1666-6038 es
sedici.creator.person Salvatelli, Adrián es
sedici.creator.person Caropresi, José es
sedici.creator.person Delrieux, Claudio es
sedici.creator.person Izaguirre, María F. es
sedici.creator.person Casco, Víctor es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc/3.0/
sedici.description.peerReview peer-review es
sedici2003.identifier ARG-UNLP-ART-0000000586 es
sedici.relation.journalTitle Journal of Computer Science & Technology es
sedici.relation.journalVolumeAndIssue vol. 7, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)