Busque entre los 168426 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2020-05-08T18:54:50Z | |
dc.date.available | 2020-05-08T18:54:50Z | |
dc.date.issued | 2018-01 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/95480 | |
dc.description.abstract | Golumbic, Lipshteyn and Stern [12] proved that every graph can be represented as the edge intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer k, Bk-EPG graphs are defined as EPG graphs admitting a model in which each path has at most k bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is a B4-EPG graph, by embedding the circle into a rectangle of the grid. In this paper, we prove that circular-arc graphs are B3-EPG, and that there exist circular-arc graphs which are not B2-EPG. If we restrict ourselves to rectangular representations (i.e., the union of the paths used in the model is contained in the boundary of a rectangle of the grid), we obtain EPR (edge intersection of paths in a rectangle) representations. We may define Bk-EPR graphs, k≥0, the same way as Bk-EPG graphs. Circular-arc graphs are clearly B4-EPR graphs and we will show that there exist circular-arc graphs that are not B3-EPR graphs. We also show that normal circular-arc graphs are B2-EPR graphs and that there exist normal circular-arc graphs that are not B1-EPR graphs. Finally, we characterize B1-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they form a subclass of normal Helly circular-arc graphs. | en |
dc.format.extent | 12-21 | es |
dc.language | en | es |
dc.subject | (normal, helly) circular-arc graphs | es |
dc.subject | Edge intersection graphs | es |
dc.subject | Forbidden induced subgraphs | es |
dc.subject | Paths on a grid | es |
dc.subject | Powers of cycles | es |
dc.title | On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid | en |
dc.type | Articulo | es |
sedici.identifier.uri | https://ri.conicet.gov.ar/11336/83118 | es |
sedici.identifier.uri | https://arxiv.org/abs/1506.08750 | es |
sedici.identifier.other | http://dx.doi.org/10.1016/j.dam.2016.08.004 | es |
sedici.identifier.other | arXiv:1506.08750 | es |
sedici.identifier.other | hdl:11336/83118 | es |
sedici.identifier.issn | 0166-218X | es |
sedici.creator.person | Alcón, Liliana Graciela | es |
sedici.creator.person | Bonomo, Flavia | es |
sedici.creator.person | Duran, Guillermo Alfredo | es |
sedici.creator.person | Gutiérrez, Marisa | es |
sedici.creator.person | Mazzoleni, María Pía | es |
sedici.creator.person | Ries, Bernard | es |
sedici.creator.person | Valencia-Pabon, Mario | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Consejo Nacional de Investigaciones Científicas y Técnicas | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Preprint | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Discrete Applied Mathematics | es |
sedici.relation.journalVolumeAndIssue | vol. 234 | es |