Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-05-08T18:54:50Z
dc.date.available 2020-05-08T18:54:50Z
dc.date.issued 2018-01
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/95480
dc.description.abstract Golumbic, Lipshteyn and Stern [12] proved that every graph can be represented as the edge intersection graph of paths on a grid (EPG graph), i.e., one can associate with each vertex of the graph a nontrivial path on a rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. For a nonnegative integer k, Bk-EPG graphs are defined as EPG graphs admitting a model in which each path has at most k bends. Circular-arc graphs are intersection graphs of open arcs of a circle. It is easy to see that every circular-arc graph is a B4-EPG graph, by embedding the circle into a rectangle of the grid. In this paper, we prove that circular-arc graphs are B3-EPG, and that there exist circular-arc graphs which are not B2-EPG. If we restrict ourselves to rectangular representations (i.e., the union of the paths used in the model is contained in the boundary of a rectangle of the grid), we obtain EPR (edge intersection of paths in a rectangle) representations. We may define Bk-EPR graphs, k≥0, the same way as Bk-EPG graphs. Circular-arc graphs are clearly B4-EPR graphs and we will show that there exist circular-arc graphs that are not B3-EPR graphs. We also show that normal circular-arc graphs are B2-EPR graphs and that there exist normal circular-arc graphs that are not B1-EPR graphs. Finally, we characterize B1-EPR graphs by a family of minimal forbidden induced subgraphs, and show that they form a subclass of normal Helly circular-arc graphs. en
dc.format.extent 12-21 es
dc.language en es
dc.subject (normal, helly) circular-arc graphs es
dc.subject Edge intersection graphs es
dc.subject Forbidden induced subgraphs es
dc.subject Paths on a grid es
dc.subject Powers of cycles es
dc.title On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid en
dc.type Articulo es
sedici.identifier.uri https://ri.conicet.gov.ar/11336/83118 es
sedici.identifier.uri https://arxiv.org/abs/1506.08750 es
sedici.identifier.other http://dx.doi.org/10.1016/j.dam.2016.08.004 es
sedici.identifier.other arXiv:1506.08750 es
sedici.identifier.other hdl:11336/83118 es
sedici.identifier.issn 0166-218X es
sedici.creator.person Alcón, Liliana Graciela es
sedici.creator.person Bonomo, Flavia es
sedici.creator.person Duran, Guillermo Alfredo es
sedici.creator.person Gutiérrez, Marisa es
sedici.creator.person Mazzoleni, María Pía es
sedici.creator.person Ries, Bernard es
sedici.creator.person Valencia-Pabon, Mario es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Consejo Nacional de Investigaciones Científicas y Técnicas es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Discrete Applied Mathematics es
sedici.relation.journalVolumeAndIssue vol. 234 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)