Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2008-05-23T17:44:34Z
dc.date.available 2008-05-23T03:00:00Z
dc.date.issued 2005-10
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/9587
dc.description.abstract A number of texture classification approaches have been developed in the past but most of these studies target graylevel textures. In this work, novel results are presented on Neural Network based classification of color textures in a very large heterogeneous database. Several different Multispectral Random Field models are used to characterize the textures. The classifying features are based on the estimated parameters of these model and functions defined on them. The approach is tested on a database of 73 different color textures classes. The advantage of utilizing color information is demonstrated by converting color textures to gray-level ones and classifying them using Grey Level Co-Occurrence Matrix (GLCM) based features. en
dc.format.extent 150-157 es
dc.language en es
dc.subject Color, shading, shadowing, and texture es
dc.subject Neural nets es
dc.title Classification of color textures with random field models and neural networks en
dc.type Articulo es
sedici.identifier.uri http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct05-6.pdf es
sedici.identifier.issn 1666-6038 es
sedici.creator.person Hernandez, Orlando J. es
sedici.creator.person Cook, John es
sedici.creator.person Griffin, Michael es
sedici.creator.person De Rama, Cynthia es
sedici.creator.person McGovern, Michael es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc/3.0/
sedici.description.peerReview peer-review es
sedici2003.identifier ARG-UNLP-ART-0000000614 es
sedici.relation.journalTitle Journal of Computer Science & Technology es
sedici.relation.journalVolumeAndIssue vol. 5, no. 3 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)