Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2008-05-23T19:27:43Z
dc.date.available 2008-05-23T03:00:00Z
dc.date.issued 2005-12
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/9594
dc.description.abstract This paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions proposed in the specialized literature. Preliminary simulations results are presented and compared with those obtained with the Pareto Archived Evolution Strategy (PAES) and the Multi-Objective Genetic Algorithm 2 (MOGA2). These results also show that the SMOPSO algorithm is a promising alternative to tackle multiobjective optimization problems. en
dc.format.extent 204-210 es
dc.language en es
dc.subject Optimization es
dc.subject pareto optimality en
dc.title A particle swarm optimizer for multi-objective optimization en
dc.type Articulo es
sedici.identifier.uri http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Dec05-7.pdf es
sedici.identifier.issn 1666-6038 es
sedici.creator.person Cagnina, Leticia es
sedici.creator.person Esquivel, Susana Cecilia es
sedici.creator.person Coello Coello, Carlos es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc/3.0/
sedici.description.peerReview peer-review es
sedici2003.identifier ARG-UNLP-ART-0000000626 es
sedici.relation.journalTitle Journal of Computer Science & Technology es
sedici.relation.journalVolumeAndIssue vol. 5, no. 4 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)