Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2008-05-23T21:22:43Z
dc.date.available 2008-05-23T03:00:00Z
dc.date.issued 2005-12
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/9603
dc.description.abstract Clustering task aims at the unsupervised classification of patterns (e.g., observations, data, vec- tors, etc.) in different groups. Clustering problem has been approached from different disciplines during the last years. Although have been proposed different alternatives to cope with clustering, there also exists an interesting and novel field of research from which different bioinspired algorithms have emerged, e.g., genetic algorithms and ant colony algorithms. In this article we pro- pose an extension of the AntTree algorithm, an example of an algorithm recently proposed for a data mining task which is designed following the principle of self-assembling behavior observed in some species of real ants. The extension proposed called Adaptive-AntTree (AAT for short) represents a more flexible version of the original one. The ants in AAT are able of changing the assigned position in previous iterations in the tree under construction. As a consequence, this new algorithm builds an adaptive hierarchical cluster which changes over the run in order to improve the final result. The AAT performance is experimentally analyzed and compared against AntTree and K-means which is one of the more popular and referenced clustering algorithm. en
dc.format.extent 264-271 es
dc.language en es
dc.subject Clustering es
dc.subject computational intelligence en
dc.subject Data mining es
dc.subject bioinspired algorithms en
dc.title Adaptive clustering with artificial ants en
dc.type Articulo es
sedici.identifier.uri http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Dec05-16.pdf es
sedici.identifier.issn 1666-6038 es
sedici.creator.person Ingaramo, Diego Alejandro es
sedici.creator.person Leguizamón, Mario Guillermo es
sedici.creator.person Errecalde, Marcelo Luis es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc/3.0/
sedici.description.peerReview peer-review es
sedici2003.identifier ARG-UNLP-ART-0000000637 es
sedici.relation.journalTitle Journal of Computer Science & Technology es
sedici.relation.journalVolumeAndIssue vol. 5, no. 4 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)