Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-05-18T13:44:00Z
dc.date.available 2020-05-18T13:44:00Z
dc.date.issued 2003-12
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/96118
dc.description.abstract Self-diffusion of calcium, yttrium, and zirconium in single-crystalline YSZ and CSZ (YSZ: yttria-stabilized zirconia; containing 10 to 32 mol % Y2O3 ; CSZ: calcia-stabilized zirconia; containing 11 and 17 mol % CaO) was measured at temperatures between 960 and 1700 °C. For zirconium and calcium diffusion, the stable isotopes 44Ca and 96Zr were used as tracers and the samples were analyzed with secondary ion mass spectrometry. In the case of yttrium diffusion, the radioactive tracer 88Y was used and an abrasive sectioning technique was applied. Zirconium bulk diffusion is slower than yttrium and calcium bulk diffusion, and there is a nearly linear correlation of diffusion coefficient with cation radius. In YSZ, zirconium and yttrium bulk diffusivity are maximum for a stabilizer content of 10–11 mol %, while in CSZ both calcium and zirconium tracer diffusion are independent of the calcium content. The activation enthalpy of yttrium stabilizer bulk diffusion (4.2 eV) is, as in CSZ, slightly smaller than for zirconium bulk diffusion (4.5 eV). The yttrium dislocation pipe diffusivity is five to six orders of magnitude faster than the bulk diffusivity, and its activation enthalpy (3.5 eV) is also smaller than that of the bulk diffusion. From the activation enthalpy and from the concentration dependence of the cation bulk diffusion, it is concluded that the cation diffusion occurs either via free vacancies (V48 Zr in YSZ) or via bound vacancies ([V48 Zr-2V2•O]x in CSZ) en
dc.format.extent 7547-7552 es
dc.language en es
dc.subject Cation diffusion es
dc.subject Zirconia es
dc.title Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia en
dc.type Articulo es
sedici.identifier.uri https://ri.conicet.gov.ar/11336/74361 es
sedici.identifier.uri https://aip.scitation.org/doi/abs/10.1063/1.1628379 es
sedici.identifier.other http://dx.doi.org/10.1063/1.1628379 es
sedici.identifier.other hdl:11336/74361 es
sedici.identifier.issn 0021-8979 es
sedici.creator.person Kilo, M. es
sedici.creator.person Taylor, Marcela Andrea es
sedici.creator.person Argirusis, Ch. es
sedici.creator.person Borchardt, G. es
sedici.creator.person Lesage, B. es
sedici.creator.person Weber, S. es
sedici.creator.person Scherrer, S. es
sedici.creator.person Scherrer, H. es
sedici.creator.person Schroeder, M. es
sedici.creator.person Martin, M. es
sedici.subject.materias Física es
sedici.subject.materias Ciencias Exactas es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Física La Plata es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Applied Physics es
sedici.relation.journalVolumeAndIssue vol. 94, no. 12 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)