Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-05-18T18:53:06Z
dc.date.available 2020-05-18T18:53:06Z
dc.date.issued 2018-07
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/96208
dc.description.abstract In this work we propose a domain decomposition method based on Robin type boundary con- ditions that is suitable to solve the porous media equations on very large reservoirs. In order to reduce the algebraic systems to be solved to affordable sizes, a multiscale formulation is considered in which the coupling variables between subdomains, namely, pressures and normal fluxes, are seek in low dimen- sional spaces on the skeleton of the decomposition, while considering the permeability heterogeneities in the original fine grid for the local problems. In the new formulation, a non-dimensional parameter in the Robin condition is introduced such that we may transit smoothly from two well known formulations, namely, the Multiscale Mortar Mixed and the Multiscale Hybrid Mixed finite element methods. In the proposed formulation the interface spaces for pressure and fluxes can be selected independently. This has the potential to produce more accurate results by better accommodating local features of the exact solution near subdomain boundaries. Several numerical examples which exhibit highly heterogeneous permeability fields and channelized regions are solved with the new formulation and results compared to the aforementioned multiscale methods. es
dc.description.abstract We studied by molecular dynamics (MD) aggregating two mini proteins such as TRP-cage (TRP) in neutral pH conditions and with explicit solvent. The results correspond to two different systems, the first with 3952 water molecules and one TRP and the second with 7654 water molecules and two TRPs. Both systems were simulated in NVT and NPT ensembles, with T = 300 K and P = 1 bar. The results show the formation of stable dimers in short simulation times. The analyzes made from the surface accessible to the solvent show that the main mechanism or driver of the formation of these dimers at neutral pH is the hydrophobic interaction between different sectors of the protein (hydrophobic amino acids). en
dc.format.extent 17-22 es
dc.language es es
dc.subject Proteínas es
dc.subject TRP-cage es
dc.subject Superficie Accesible al Solvente (SASA) es
dc.subject Proteins es
dc.subject Solvent Accessible Surface (SASA) es
dc.title Estudio de la dinámica de agregación proteica con TRP-cage es
dc.title.alternative Study of protein aggregation dynamics with TRP-cage en
dc.type Articulo es
sedici.identifier.uri https://ri.conicet.gov.ar/11336/89284 es
sedici.identifier.other hdl:11336/89284 es
sedici.identifier.issn 2027 6745 es
sedici.creator.person Faundez, Cristian Leonel es
sedici.creator.person Meyra, Ariel Germán es
sedici.creator.person Ferrara, Carlos Gastón es
sedici.subject.materias Bioquímica es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Física de Líquidos y Sistemas Biológicos es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Revista CITECSA es
sedici.relation.journalVolumeAndIssue vol. 10, no. 15 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)