Busque entre los 166890 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2020-06-01T17:28:31Z | |
dc.date.available | 2020-06-01T17:28:31Z | |
dc.date.issued | 2013-03 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/97220 | |
dc.description.abstract | Simultaneous recordings from multiple neural units allow us to investigate the activity of very large neural ensembles. To understand how large ensembles of neurons process sensory information, it is necessary to develop suitable statistical models to describe the response variability of the recorded spike trains. Using the information geometry framework, it is possible to estimate higher-order correlations by assigning one interaction parameter to each degree of correlation, leading to a (2^N-1)-dimensional model for a population with N neurons. However, this model suffers greatly from a combinatorial explosion, and the number of parameters to be estimated from the available sample size constitutes the main intractability reason of this approach. To quantify the extent of higher than pairwise spike correlations in pools of multiunit activity, we use an information-geometric approach within the framework of the extended central limit theorem considering all possible contributions from higher-order spike correlations. The identification of a deformation parameter allows us to provide a statistical characterisation of the amount of higher-order correlations in the case of a very large neural ensemble, significantly reducing the number of parameters, avoiding the sampling problem, and inferring the underlying dynamical properties of the network within pools of multiunit neural activity. | en |
dc.format.extent | 3066-3086 | es |
dc.language | en | es |
dc.subject | Neural activity | es |
dc.subject | Spike correlations | es |
dc.subject | High-order correlations | es |
dc.subject | Information-geometry approach | es |
dc.title | Statistical modelling of higher-order correlations in pools of neural activity | en |
dc.type | Articulo | es |
sedici.identifier.uri | https://ri.conicet.gov.ar/11336/23406 | es |
sedici.identifier.uri | https://arxiv.org/abs/1211.6348 | es |
sedici.identifier.other | http://dx.doi.org/10.1016/j.physa.2013.03.012 | es |
sedici.identifier.other | arXiv:1211.6348 | es |
sedici.identifier.other | hdl:11336/23406 | es |
sedici.identifier.issn | 0378-4371 | es |
sedici.creator.person | Montani, Fernando Fabián | es |
sedici.creator.person | Phoka, Elena | es |
sedici.creator.person | Portesi, Mariela Adelina | es |
sedici.creator.person | Schultz, Simon R. | es |
sedici.subject.materias | Física | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Instituto de Física de Líquidos y Sistemas Biológicos | es |
mods.originInfo.place | Instituto de Física La Plata | es |
mods.originInfo.place | Consejo Nacional de Investigaciones Científicas y Técnicas | es |
sedici.subtype | Preprint | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Physica A: Statistical Mechanics and its Applications | es |
sedici.relation.journalVolumeAndIssue | vol. 392, no. 14 | es |