Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-06-01T17:28:31Z
dc.date.available 2020-06-01T17:28:31Z
dc.date.issued 2013-03
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/97220
dc.description.abstract Simultaneous recordings from multiple neural units allow us to investigate the activity of very large neural ensembles. To understand how large ensembles of neurons process sensory information, it is necessary to develop suitable statistical models to describe the response variability of the recorded spike trains. Using the information geometry framework, it is possible to estimate higher-order correlations by assigning one interaction parameter to each degree of correlation, leading to a (2^N-1)-dimensional model for a population with N neurons. However, this model suffers greatly from a combinatorial explosion, and the number of parameters to be estimated from the available sample size constitutes the main intractability reason of this approach. To quantify the extent of higher than pairwise spike correlations in pools of multiunit activity, we use an information-geometric approach within the framework of the extended central limit theorem considering all possible contributions from higher-order spike correlations. The identification of a deformation parameter allows us to provide a statistical characterisation of the amount of higher-order correlations in the case of a very large neural ensemble, significantly reducing the number of parameters, avoiding the sampling problem, and inferring the underlying dynamical properties of the network within pools of multiunit neural activity. en
dc.format.extent 3066-3086 es
dc.language en es
dc.subject Neural activity es
dc.subject Spike correlations es
dc.subject High-order correlations es
dc.subject Information-geometry approach es
dc.title Statistical modelling of higher-order correlations in pools of neural activity en
dc.type Articulo es
sedici.identifier.uri https://ri.conicet.gov.ar/11336/23406 es
sedici.identifier.uri https://arxiv.org/abs/1211.6348 es
sedici.identifier.other http://dx.doi.org/10.1016/j.physa.2013.03.012 es
sedici.identifier.other arXiv:1211.6348 es
sedici.identifier.other hdl:11336/23406 es
sedici.identifier.issn 0378-4371 es
sedici.creator.person Montani, Fernando Fabián es
sedici.creator.person Phoka, Elena es
sedici.creator.person Portesi, Mariela Adelina es
sedici.creator.person Schultz, Simon R. es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Física de Líquidos y Sistemas Biológicos es
mods.originInfo.place Instituto de Física La Plata es
mods.originInfo.place Consejo Nacional de Investigaciones Científicas y Técnicas es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Physica A: Statistical Mechanics and its Applications es
sedici.relation.journalVolumeAndIssue vol. 392, no. 14 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)