Busque entre los 168385 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2020-06-11T17:19:02Z | |
dc.date.available | 2020-06-11T17:19:02Z | |
dc.date.issued | 2012-05-24 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/98087 | |
dc.description.abstract | The growth of cooperatively rearranging regions was invoked long ago by Adam and Gibbs to explain the slowing down of glass-forming liquids. The lack of knowledge about the nature of the growing order, though, complicates the definition of an appropriate correlation function. One option is the point-to-set (PTS) correlation function, which measures the spatial span of the influence of amorphous boundary conditions on a confined system. By using a swap Monte Carlo algorithm we measure the equilibration time of a liquid droplet bounded by amorphous boundary conditions in a model glass-former at low temperature, and we show that the cavity relaxation time increases with the size of the droplet, saturating to the bulk value when the droplet outgrows the point-to-set correlation length. This fact supports the idea that the point-to-set correlation length is the natural size of the cooperatively rearranging regions. On the other hand, the cavity relaxation time computed by a standard, nonswap dynamics, has the opposite behavior, showing a very steep increase when the cavity size is decreased. We try to reconcile this difference by discussing the possible hybridization between mode-coupling theory and activated processes, and by introducing a new kind of amorphous boundary conditions, inspired by the concept of frozen external state as an alternative to the commonly used frozen external configuration. | en |
dc.format.extent | 1-16 | es |
dc.language | en | es |
dc.subject | Glass-forming liquids | es |
dc.subject | Cavity relaxation time | es |
dc.title | Dynamic relaxation of a liquid cavity under amorphous boundary conditions | en |
dc.type | Articulo | es |
sedici.identifier.uri | https://ri.conicet.gov.ar/11336/81913 | es |
sedici.identifier.uri | https://aip.scitation.org/doi/10.1063/1.4720477 | es |
sedici.identifier.other | http://dx.doi.org/10.1063/1.4720477 | es |
sedici.identifier.other | hdl:11336/81913 | es |
sedici.identifier.issn | 0021-9606 | es |
sedici.creator.person | Cavagna, A. | es |
sedici.creator.person | Grigera, Tomás Sebastián | es |
sedici.creator.person | Verrocchio, Paolo | es |
sedici.subject.materias | Física | es |
sedici.subject.materias | Ciencias Exactas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Journal of Chemical Physics | es |
sedici.relation.journalVolumeAndIssue | vol. 136, no. 20 | es |