Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-06-22T18:53:10Z
dc.date.available 2020-06-22T18:53:10Z
dc.date.issued 2014-03
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/98796
dc.description.abstract Wave-induced fluid flow (WIFF) between fractures and the embedding matrix as well as within connected fractures tends to produce significant seismic attenuation and velocity dispersion. While WIFF between fractures and matrix is well understood, the corresponding effects related to fracture connectivity and the characteristics of the energy dissipation due to flow within fractures are largely unexplored. In this work, we use oscillatory relaxation simulations based on the quasi-static poroelastic equations to study these phenomena. We first consider synthetic rock samples containing connected and unconnected fractures and compute the corresponding attenuation and phase velocity. We also determine the relative fluid displacement and pressure fields in order to gain insight into the physical processes involved in the two manifestations of WIFF in fractured media. To quantify the contributions of the two WIFF mechanisms to the total seismic attenuation, we compute the spatial distribution of the local energy dissipation. Finally, we perform an exhaustive sensitivity analysis to study the role played by different characteristics of fracture networks on the seismic signatures. We show that in the presence of connected fractures both P wave attenuation and phase velocity are sensitive to some key characteristics of the probed medium, notably to the lengths, permeabilities, and intersection angles of the fractures as well as to the overall degree of connectivity of the fracture network. This, in turn, indicates that a deeper understanding of these two manifestations of WIFF in fractured media may eventually allow for the extraction of some of these properties from seismic data. en
dc.format.extent 2252-2271 es
dc.language en es
dc.subject Acoustic properties es
dc.subject Fracture and flow es
dc.subject Seismic methods es
dc.subject Wave attenuation es
dc.title Seismoacoustic signatures of fracture connectivity en
dc.type Articulo es
sedici.identifier.uri https://ri.conicet.gov.ar/11336/31406 es
sedici.identifier.uri http://onlinelibrary.wiley.com/doi/10.1002/2013JB010567/abstract es
sedici.identifier.other http://dx.doi.org/10.1002/2013JB010567 es
sedici.identifier.other hdl:11336/31406 es
sedici.identifier.issn 0148-0227 es
sedici.creator.person Rubino, Jorge Germán es
sedici.creator.person Müller, Tobias M. es
sedici.creator.person Guarracino, Luis es
sedici.creator.person Milani, Marco es
sedici.creator.person Holliger, Klaus es
sedici.subject.materias Geofísica es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Astronómicas y Geofísicas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Geophysical Research es
sedici.relation.journalVolumeAndIssue vol. 119, no. 3 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)