Upload resources

Upload your works to SEDICI to increase its visibility and improve its impact

 

Show simple item record

dc.date.accessioned 2020-07-02T13:06:26Z
dc.date.available 2020-07-02T13:06:26Z
dc.date.issued 2014-06
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/99737
dc.description.abstract Given a positive and unitarily invariant Lagrangian L defined in the algebra of matrices, and a fixed time interval [0, t0 ] ⊂ ℝ, we study the action defined in the Lie group of n × n unitary matrices U(n) by, where α: [0, t0] → U(n) is a rectifiable curve. We prove that the one-parameter subgroups of U(n) are the optimal paths, provided the spectrum of the exponent is bounded by π. Moreover, if L is strictly convex, we prove that one-parameter subgroups are the unique optimal curves joining given endpoints. Finally, we also study the connection of these results with unitarily invariant metrics in U(n) as well as angular metrics in the Grassmann manifold. en
dc.format.extent 481-497 es
dc.language en es
dc.subject Geodesic segment es
dc.subject Lagrangian es
dc.subject Optimal path es
dc.subject Unitarily invariant norm es
dc.subject Unitary group es
dc.subject Grassmann manifold es
dc.subject Angular metric es
dc.title Optimal Paths for Symmetric Actions in the Unitary Group en
dc.type Articulo es
sedici.identifier.uri https://ri.conicet.gov.ar/11336/37335 es
sedici.identifier.other http://dx.doi.org/10.1007/s00220-014-2041-x es
sedici.identifier.other arXiv:1107.2439 es
sedici.identifier.other hdl:11336/37335 es
sedici.identifier.issn 0010-3616 es
sedici.creator.person Antezana, Jorge Abel es
sedici.creator.person Larotonda, Gabriel es
sedici.creator.person Varela, Alejandro es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Communications in Mathematical Physics es
sedici.relation.journalVolumeAndIssue vol. 328, no. 2 es


Download Files

This item appears in the following Collection(s)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Except where otherwise noted, this item's license is described as Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)