Busque entre los 168833 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2020-07-02T14:33:36Z | |
dc.date.available | 2020-07-02T14:33:36Z | |
dc.date.issued | 2014-11 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/99759 | |
dc.description.abstract | A pre-cohesive geometric morphism p : E → S satisfies Continuity if the canonical p!(Xp ∗S) → (p!X) S is an iso for every X in E and S in S. We show that if S = Set and E is a presheaf topos then, p satisfies Continuity if and only if it is a quality type. Our proof of this characterization rests on a related result showing that Continuity and Sufficient Cohesion are incompatible for presheaf toposes. This incompatibility raises the question whether Continuity and Sufficient Cohesion are ever compatible for Grothendieck toposes. We show that the answer is positive by building some examples. | en |
dc.format.extent | 542-568 | es |
dc.language | en | es |
dc.subject | Axiomatic cohesion | es |
dc.subject | Topos | es |
dc.title | Continuous cohesion over sets | en |
dc.type | Articulo | es |
sedici.identifier.uri | https://ri.conicet.gov.ar/11336/46008 | es |
sedici.identifier.uri | http://www.tac.mta.ca/tac/volumes/29/20/29-20.pdf | es |
sedici.identifier.other | hdl:11336/46008 | es |
sedici.identifier.issn | 1201-561X | es |
sedici.creator.person | Menni, Matías | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Preprint | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Theory and Applications of Categories | es |
sedici.relation.journalVolumeAndIssue | vol. 29, no. 20 | es |