Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-08-03T16:42:46Z
dc.date.available 2020-08-03T16:42:46Z
dc.date.issued 2010-02
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/101182
dc.description.abstract We present results about minimization of convex functionals defined over a finite set of vectors in a finite-dimensional Hilbert space, that extend several known results for the Benedetto-Fickus frame potential. Our approach depends on majorization techniques. We also consider some perturbation problems, where a positive perturbation of the frame operator of a set of vectors is realized as the frame operator of a set of vectors which is close to the original one. en
dc.format.extent 131-153 es
dc.language en es
dc.subject Frames es
dc.subject Frame potential es
dc.subject Majorization es
dc.title Minimization of convex functionals over frame operators en
dc.type Articulo es
sedici.identifier.uri https://ri.conicet.gov.ar/11336/19429 es
sedici.identifier.uri https://link.springer.com/article/10.1007/s10444-008-9092-5 es
sedici.identifier.uri https://arxiv.org/abs/0710.1258 es
sedici.identifier.other http://dx.doi.org/10.1007/s10444-008-9092-5 es
sedici.identifier.other arXiv:0710.1258 es
sedici.identifier.other hdl:11336/19429 es
sedici.identifier.issn 1019-7168 es
sedici.creator.person Massey, Pedro Gustavo es
sedici.creator.person Ruiz, Mariano Andrés es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Advances In Computational Mathematics es
sedici.relation.journalVolumeAndIssue vol. 32, no. 2 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)