We propose a simple pedagogical way of introducing the Euler-MacLaurin summation formula in an undergraduate course on statistical mechanics. The reason is that the students may feel more comfortable and confident if they are able to deduce the main equations. To this end we put forward two alternative routes: the first one is the simplest and yields the first two terms of the expansion. The second one is somewhat more elaborate and takes into account all the correction terms. We apply both to the calculation of the simplest one-particle canonical partition functions for the translational, vibrational and rotational degrees of freedom. The more elaborate, systematic calculation of the correction terms is suitable for motivating the students to explore the possibility of using available computer algebra software that enable one to avoid long and tedious manipulation of algebraic equations.