We consider a class of one-dimensional non-Hermitian oscillators and discuss the relationship between the real eigenvalues of PT-symmetric oscillators and the resonances obtained by different authors. We also show the relationship between the strong-coupling expansions for the eigenvalues of those oscillators. A comparison of the results of the complex rotation and the Riccati–Padé methods reveals that the optimal rotation angle converts the oscillator into either a PT-symmetric or a Hermitian one. In addition to the real positive eigenvalues, the PT-symmetric oscillators exhibit real positive resonances under different boundary conditions. These can be calculated by means of the straightforward diagonalization method. The Riccati–Padé method yields not only the resonances of the non-Hermitian oscillators but also the eigenvalues of the PT-symmetric ones.
Información general
Fecha de publicación:abril 2013
Idioma del documento:Inglés
Revista:Journal of Physics A; vol. 46, no. 19
Institución de origen:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Otros Identificadores:arXiv:http://arxiv.org/abs/1301.1676hdl:11336/5051
Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)