Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-08-07T15:21:10Z
dc.date.available 2020-08-07T15:21:10Z
dc.date.issued 2015-03
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/101650
dc.description.abstract Good robust estimators can be tuned to combine a high breakdown point and a specified asymptotic efficiency at a central model. This happens in regression with MM- and -estimators among others. However, the finite-sample efficiency of these estimators can be much lower than the asymptotic one. To overcome this drawback, an approach is proposed for parametric models, which is based on a distance between parameters. Given a robust estimator, the proposed one is obtained by maximizing the likelihood under the constraint that the distance is less than a given threshold. For the linear model with normal errors, simulations show that the proposed estimator attains a finite-sample efficiency close to one while improving the robustness of the initial estimator. The same approach also shows good results in the estimation of multivariate location and scatter. en
dc.format.extent 262-274 es
dc.language en es
dc.subject Linear model es
dc.subject Robust estimator es
dc.subject High efficiency es
dc.title High finite-sample efficiency and robustness based on distance-constrained maximum likelihood en
dc.type Articulo es
sedici.identifier.uri https://ri.conicet.gov.ar/11336/42723 es
sedici.identifier.other https://doi.org/10.1016/j.csda.2014.10.015 es
sedici.identifier.other hdl:11336/42723 es
sedici.identifier.issn 0167-9473 es
sedici.creator.person Maronna, Ricardo Antonio es
sedici.creator.person Yohai, Victor Jaime es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Computational Statistics and Data Analysis es
sedici.relation.journalVolumeAndIssue vol. 83 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)