Busque entre los 169101 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2020-08-07T15:21:10Z | |
dc.date.available | 2020-08-07T15:21:10Z | |
dc.date.issued | 2015-03 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/101650 | |
dc.description.abstract | Good robust estimators can be tuned to combine a high breakdown point and a specified asymptotic efficiency at a central model. This happens in regression with MM- and -estimators among others. However, the finite-sample efficiency of these estimators can be much lower than the asymptotic one. To overcome this drawback, an approach is proposed for parametric models, which is based on a distance between parameters. Given a robust estimator, the proposed one is obtained by maximizing the likelihood under the constraint that the distance is less than a given threshold. For the linear model with normal errors, simulations show that the proposed estimator attains a finite-sample efficiency close to one while improving the robustness of the initial estimator. The same approach also shows good results in the estimation of multivariate location and scatter. | en |
dc.format.extent | 262-274 | es |
dc.language | en | es |
dc.subject | Linear model | es |
dc.subject | Robust estimator | es |
dc.subject | High efficiency | es |
dc.title | High finite-sample efficiency and robustness based on distance-constrained maximum likelihood | en |
dc.type | Articulo | es |
sedici.identifier.uri | https://ri.conicet.gov.ar/11336/42723 | es |
sedici.identifier.other | https://doi.org/10.1016/j.csda.2014.10.015 | es |
sedici.identifier.other | hdl:11336/42723 | es |
sedici.identifier.issn | 0167-9473 | es |
sedici.creator.person | Maronna, Ricardo Antonio | es |
sedici.creator.person | Yohai, Victor Jaime | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Preprint | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Computational Statistics and Data Analysis | es |
sedici.relation.journalVolumeAndIssue | vol. 83 | es |