El campo de la ciencia de datos ha tenido muchos avances respecto a la aplicación y desarrollo de técnicas en el sector de la salud.
Estos avances se ven reflejados en la predicción de enfermedades, clasificación de imágenes, identificación y reducción de riesgos, así como muchos otros. Sin embargo, no se han encontrado trabajos que apliquen procesos o técnicas de aprendizaje automático específicamente a la predicción de fracasos en implantes dentales. Este trabajo tiene por objetivo investigar el beneficio de la utilización de múltiples algoritmos de clasificación, para la predicción de fracasos en implantes dentales de la provincia de Misiones, Argentina. La experimentación es realizada con tres conjuntos de datos, un conjunto concerniente a historias clínicas de implantes dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y un conjunto obtenido del repositorio de datos kaggle. En comparación con los clasificadores individuales, el enfoque propuesto obtiene el mayor porcentaje de acierto de los fracasos, logrando un 75% de casos correctamente identificados.