Busque entre los 167390 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2020-09-03T15:48:33Z | |
dc.date.available | 2020-09-03T15:48:33Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/103756 | |
dc.description.abstract | We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this paper we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it. | en |
dc.format.extent | 1008-1011 | es |
dc.language | en | es |
dc.subject | Clique coloring | es |
dc.subject | Edge intersection graphs | es |
dc.subject | Paths on grids | es |
dc.subject | Polynomial time algorithm | es |
dc.title | Clique coloring B1-EPG graphs | en |
dc.type | Articulo | es |
sedici.identifier.other | https://doi.org/10.1016/j.disc.2017.01.019 | es |
sedici.identifier.issn | 0012-365X | es |
sedici.creator.person | Bonomo, Flavia | es |
sedici.creator.person | Mazzoleni, María Pía | es |
sedici.creator.person | Stein, Maya | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Comunicacion | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Discrete Mathematics | es |
sedici.relation.journalVolumeAndIssue | vol. 340, no. 5 | es |