We calculate the critical parameters for some simple quantum wells by means of the Riccati–Padé method. The original approach converges reasonably well for nonzero angular-momentum quantum number l but rather too slowly for the s states. We therefore propose a simple modification that yields remarkably accurate results for the latter case. The rate of convergence of both methods increases with l and decreases with the radial quantum number n. We compare RPM results with WKB ones for sufficiently large values of l. As illustrative examples we choose the one-dimensional and central-field Gaussian wells as well as the Yukawa potential. The application of perturbation theory by means of the RPM to a class of rational potentials yields interesting and baffling unphysical results.
Información general
Fecha de publicación:12 de julio de 2013
Idioma del documento:Inglés
Revista:Applied Mathematics And Computation; vol. 220
Institución de origen:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Otros Identificadores:arXiv:1210.4205v2 [quant-ph]arXiv:http://arxiv.org/abs/1210.4205hdl:11336/4816
Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Argentina (CC BY-NC-ND 2.5)