La dinámica de tecleo permite la identificación de una persona por la forma en que escribe. La tesis aquí resumida se enfoca en analizar la robustez de los algoritmos de análisis de cadencia de tecleo frente a variaciones en los registros biométricos mediante electroencefalografía y cuestionario de autoinforme, utilizando el enfoque dimensional para modelar estados afectivos. Se realizó un experimento para capturar patrones de tecleo en diferentes estados afectivos. Los resultados sugirieron que la tasa de aciertos para ciertas distancias de clasificación, como las métricas A y R, la distancia de Gamberra, Manhattan y una distancia basada en Minkowski se ven influenciadas negativamente por los cambios en las respuestas de excitación y valencia. La distancia euclídea fue la menos afectada de las seis evaluadas.