The title paper [1] reports a study on the spectroscopic and physicochemical properties of 1-(5-methyl- [1,3,4]thiadiazol-2-yl)-pyrrolidin-2-ol (MTPN) based on experimental and theoretical data. The latter ones are based on the computed molecular structure for a rather unusual conformer. Here, after a careful analysis of the conformational space of MTPN, the most stable conformation was determined for the molecule isolated in a vacuum, which results to be 21.9 kJ/mol more stable than the conformer reported previously. Our study also includes the closely related species 1-(5-trifluoromethyl- [1,3,4]thiadiazol-2-yl)-pyrrolidin-2-ol (FMTPN). An intramolecular OH ⋯ N hydrogen bond determines the conformational behavior of the [1,3,4]thiadiazol-2-yl)-pyrrolidin-2-ol group as demonstrated by Natural Bond Orbital population analysis.