Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-09-30T19:10:41Z
dc.date.available 2020-09-30T19:10:41Z
dc.date.issued 2017
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/105826
dc.description.abstract La detección automática de líneas costeras y riberas, a partir de imágenes de radar de apertura sintética (conocidas como SAR, por las siglas en inglés de Synthetic Aperture Radar) es una tarea difícil dentro del campo del procesamiento de imágenes, debido a la presencia de retrodispersiones similares al ruido moteado multiplicativo. Recientemente, se presentó un Marco Wavelet Borroso (Fuzzy Wavelet Framework, FWF) para la detección de líneas costeras en imágenes SAR basado en una combinación de Wavelets unidimensionales, como filtro para la eliminación de parte del ruido moteado, y Lógica Difusa, para la detección de las líneas costeras, ya que tiene su potencialidad en la toma de decisiones en ambientes ruidosos y mal definidas (K. Nemer Pelliza, tesis doctoral, Universidad Tecnológica Nacional, Facultad Regional Córdoba, Argentina, 2016). Para realizar la detección de líneas costeras, se construye un mapa borroso de la imagen Wavelet intermedia, extrayéndose sus bordes. Dicho algoritmo codifica las filas y columnas de píxeles de la imagen, por lo que posee buena exactitud y preferencia en identificar bordes verticales y horizontales; la ventaja de este algoritmo es su rapidez y eficiencia. En el presente trabajo se presenta un estudio para analizar la detección de bordes en situaciones desfavorables para el algoritmo con el objetivo de mejorarlo y resolver el problema con mayor exactitud. Para esto se generan imágenes dicotómicas, con figuras de bordes lisos con presencia de líneas no alineadas con filas o columnas (por ej. círculo, rombo, estrella, etc.), se les aplican las 120 combinaciones distribuciones de retrodispersiones, para obtener imágenes similares a las del tipo SAR. Se calcula el error de detección de borde y se muestran las características de las imágenes que generan un mayor nivel de error en el método. Finalmente, se indican las posibles vías de acción para mejorar el FWF. es
dc.format.extent 2539-2546 es
dc.language es es
dc.subject Detección de bordes es
dc.subject Imágenes SAR es
dc.subject Wavelets es
dc.subject Lógica Borrosa es
dc.title Análisis del funcionamiento de un método basado en wavelets borrosos para la detección de bordes en imágenes sintéticas del tipo SAR es
dc.type Objeto de conferencia es
sedici.identifier.uri https://cimec.org.ar/ojs/index.php/mc/article/view/5468 es
sedici.identifier.issn 2591-3522 es
sedici.creator.person Nemer Pelliza, Karim A. es
sedici.creator.person Pucheta, Martín A. es
sedici.creator.person Flesia, Ana G. es
sedici.description.note Publicado en: Mecánica Computacional vol. XXXV, no. 43 es
sedici.subject.materias Ingeniería es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ingeniería es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2017-11
sedici.relation.event XXIII Congreso de Métodos Numéricos y sus Aplicaciones (ENIEF) (La Plata, 7 al 10 de noviembre 2017) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)