Busque entre los 168782 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2020-09-30T19:10:41Z | |
dc.date.available | 2020-09-30T19:10:41Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/105826 | |
dc.description.abstract | La detección automática de líneas costeras y riberas, a partir de imágenes de radar de apertura sintética (conocidas como SAR, por las siglas en inglés de Synthetic Aperture Radar) es una tarea difícil dentro del campo del procesamiento de imágenes, debido a la presencia de retrodispersiones similares al ruido moteado multiplicativo. Recientemente, se presentó un Marco Wavelet Borroso (Fuzzy Wavelet Framework, FWF) para la detección de líneas costeras en imágenes SAR basado en una combinación de Wavelets unidimensionales, como filtro para la eliminación de parte del ruido moteado, y Lógica Difusa, para la detección de las líneas costeras, ya que tiene su potencialidad en la toma de decisiones en ambientes ruidosos y mal definidas (K. Nemer Pelliza, tesis doctoral, Universidad Tecnológica Nacional, Facultad Regional Córdoba, Argentina, 2016). Para realizar la detección de líneas costeras, se construye un mapa borroso de la imagen Wavelet intermedia, extrayéndose sus bordes. Dicho algoritmo codifica las filas y columnas de píxeles de la imagen, por lo que posee buena exactitud y preferencia en identificar bordes verticales y horizontales; la ventaja de este algoritmo es su rapidez y eficiencia. En el presente trabajo se presenta un estudio para analizar la detección de bordes en situaciones desfavorables para el algoritmo con el objetivo de mejorarlo y resolver el problema con mayor exactitud. Para esto se generan imágenes dicotómicas, con figuras de bordes lisos con presencia de líneas no alineadas con filas o columnas (por ej. círculo, rombo, estrella, etc.), se les aplican las 120 combinaciones distribuciones de retrodispersiones, para obtener imágenes similares a las del tipo SAR. Se calcula el error de detección de borde y se muestran las características de las imágenes que generan un mayor nivel de error en el método. Finalmente, se indican las posibles vías de acción para mejorar el FWF. | es |
dc.format.extent | 2539-2546 | es |
dc.language | es | es |
dc.subject | Detección de bordes | es |
dc.subject | Imágenes SAR | es |
dc.subject | Wavelets | es |
dc.subject | Lógica Borrosa | es |
dc.title | Análisis del funcionamiento de un método basado en wavelets borrosos para la detección de bordes en imágenes sintéticas del tipo SAR | es |
dc.type | Objeto de conferencia | es |
sedici.identifier.uri | https://cimec.org.ar/ojs/index.php/mc/article/view/5468 | es |
sedici.identifier.issn | 2591-3522 | es |
sedici.creator.person | Nemer Pelliza, Karim A. | es |
sedici.creator.person | Pucheta, Martín A. | es |
sedici.creator.person | Flesia, Ana G. | es |
sedici.description.note | Publicado en: Mecánica Computacional vol. XXXV, no. 43 | es |
sedici.subject.materias | Ingeniería | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ingeniería | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.date.exposure | 2017-11 | |
sedici.relation.event | XXIII Congreso de Métodos Numéricos y sus Aplicaciones (ENIEF) (La Plata, 7 al 10 de noviembre 2017) | es |
sedici.description.peerReview | peer-review | es |