En este trabajo analizaremos diferentes mecanismos de manejo de diversidad para el algoritmo CHC (Crossover elitism population, Half uniform crossover combination, Cataclysm mutation) para resolver problemas de optimización en parques eólicos de energía. El algoritmo CHC convencional contiene un mecanismo de reinicio poblacional aleatorio, esto conlleva a la posibilidad de perder cierto conocimiento adquirido si no se maneja adecuadamente. Es por ello que estudiaremos otros mecanismos de reinicio poblacional que tengan en cuenta el conocimiento adquirido durante su evolución para intentar lograr mejor convergencia en los resultados. El objetivo final es minimizar el costo del KWh analizando tres variantes de reinicio poblacional y cómo impactan en los resultados finales con respecto a la versión de CHC convencional.
Notas
Workshop: WASI – Agentes y Sistemas Inteligentes
Información general
Fecha de exposición:octubre 2020
Fecha de publicación:2020
Idioma del documento:Español
Evento:XXVI Congreso Argentino de Ciencias de la Computación (CACIC) (Modalidad virtual, 5 al 9 de octubre de 2020)
Institución de origen:Red de Universidades con Carreras en Informática
Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)