In this work, we present a new algorithm (AJSO) for high-dimensional single objective problems. It is well known that nding high quality solutions is still a challenge for complex problems like those found in the literature as well as in real world concerning Smart Grids scenarios. Our proposal AJSO is an improvement on a state-of-the-art differential Evolution (DE) based algorithm known as SHADE. More speci cally, AJSO implements two novel mutation strategies and also incorporates a mechanism for mantaining and taking good solutions from a special archive when a particular condition during the exploration process is de- tected. To compare the performance of AJSO, the benchmark given in the WCCI/GECCO 2020 is used. This challenge consisted of opti- mization problems represented in two testbeds of Smart Grids problems. In this paper we adopted the guidelines given in the WCCI/GECCO 2020 competition. Experimental results show that AJSO outperforms SHADE in the two studied testbeds.
Notas
Workshop: WBDMD – Bases de Datos y Minería de Datos
Información general
Fecha de exposición:octubre 2020
Fecha de publicación:2020
Idioma del documento:Inglés
Evento:XXVI Congreso Argentino de Ciencias de la Computación (CACIC) (Modalidad virtual, 5 al 9 de octubre de 2020)
Institución de origen:Red de Universidades con Carreras en Informática
Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)