Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-05-04T18:29:49Z
dc.date.available 2021-05-04T18:29:49Z
dc.date.issued 2017
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/118321
dc.description.abstract Breast Cancer Resistance Protein (BCRP or ABCG2) is a polyspecific efflux-transporter which belongs to the ATP-binding Cassette superfamily. Up-regulation of BCRP is associated to multi-drug resistance in a number of conditions, e.g. cancer and epilepsy. Recent proteomic studies show that high-expression levels of BCRP are found in healthy human intestine and at the blood-brain barrier, limiting the absorption and brain distribution of its substrates. Here, we have jointly applied the Enhanced Replacement Method and ensemble learning approaches to obtain combinations of 2D linear classifiers capable of discriminating among substrates and non-substrates of the wild type human BCRP. The best model ensemble obtained outperforms previously reported 2D linear classifiers, showing the ability of the Enhanced Replacement Method and ensemble learning schemes to optimize the performance of individual models. This is the first report of the Enhanced Replacement Method to solve classification problems. en
dc.language en es
dc.subject Breast Cancer Resistance Protein es
dc.subject ABC Transporters es
dc.subject ABCG2 es
dc.subject Enhanced Replacement Method es
dc.subject Ensemble Learning es
dc.subject Linear Classifiers es
dc.title Integrated Application of Enhanced Replacement Method and Ensemble Learning for the Prediction of BCRP/ABCG2 Substrates en
dc.type Articulo es
sedici.identifier.other https://doi.org/10.2174/1574893611666151109193016 es
sedici.identifier.issn 1574-8936 es
sedici.creator.person Gantner, Melisa Edith es
sedici.creator.person Alberca, Lucas Nicolás es
sedici.creator.person Mercader, Andrew Gustavo es
sedici.creator.person Bruno Blanch, Luis Enrique es
sedici.creator.person Talevi, Alan es
sedici.subject.materias Química es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Current Bioinformatics es
sedici.relation.journalVolumeAndIssue vol. 12, no. 3 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)