The electrooxidation of “reduced CO2” electroadsorbates on electrodispersed platinum electrodes has been investigated in 0.05 M HClO4, 1 M HClO4, 0.5 M H2SO4 and 1 M H3PO4 at 25° C through voltammetry and potential step techniques. The overall reaction comprises three distinguishable processes, namely a first order triggering process, and two second order surface processes. The latter are influenced remarkably by the solution composition (anions). The second order reaction mechanism involves two distinguishable “ reduced CO2” electroadsorbates which react independently with the OH species formed from H2O electrooxidation on the bare platinum sites as the reaction proceeds. An interaction term has to be included in the rate equations to account for the experimental results. The mechanistic interpretation accounts for the values of the number of electrons per site ranging from 1 to 2.