Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-08-24T17:25:23Z
dc.date.available 2021-08-24T17:25:23Z
dc.date.issued 1999
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/123300
dc.description.abstract We define a discrete group W(E) associated to a faithful normal conditional expectation E : M → N for N ⊆ M von Neuman algebras. This group shows the relation between the unitary group UN and the normalizer NE of E, which can be also considered as the isotropy of the action of the unitary group UM of M on E. It is shown that W(E) is finite if dim Z(N) < ∞ and bounded by the index in the factor case. Also sharp bounds of the order of W(E) are founded. W(E) appears as the fibre of a covering space defined on the orbit of E by the natural action of the unitary group of M. W(E) is computed in some basic examples. en
dc.format.extent 165-186 es
dc.language en es
dc.subject Weyl group es
dc.subject Algebra es
dc.subject Normalizer es
dc.subject Conditional expectation es
dc.title The Weyl group and the normalizer of a conditional expectation en
dc.type Articulo es
sedici.identifier.other doi:10.1007/bf01236470 es
sedici.identifier.issn 0378-620X es
sedici.identifier.issn 1420-8989 es
sedici.creator.person Argerami, Martín es
sedici.creator.person Stojanoff, Demetrio es
sedici.subject.materias Ciencias Exactas es
sedici.subject.materias Matemática es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Integral Equations and Operator Theory es
sedici.relation.journalVolumeAndIssue vol. 34, no. 2 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)