Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-08-26T15:28:39Z
dc.date.available 2021-08-26T15:28:39Z
dc.date.issued 1999-05-19
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/123520
dc.description.abstract This paper deals with the approximation of the vibration modes of a plate modelled by the Reissner-Mindlin equations. It is well known that, in order to avoid locking, some kind of reduced integration or mixed interpolation has to be used when solving these equations by finite element methods. In particular, one of the most widely used procedures is the mixed interpolation tensorial components, based on the family of elements called MITC. We use the lowest order method of this family. Applying a general approximation theory for spectral problems, we obtain optimal order error estimates for the eigenvectors and the eigenvalues. Under mild assumptions, these estimates are valid with constants independent of the plate thickness. The optimal double order for the eigenvalues is derived from a corresponding L 2 -estimate for a load problem which is proven here. This optimal order L 2 -estimate is of interest in itself. Finally, we present several numerical examples showing the very good behavior of the numerical procedure even in some cases not covered by our theory. en
dc.format.extent 1447-1463 es
dc.language en es
dc.subject Eigenfunction es
dc.subject Mathematical analysis es
dc.subject Finite element method es
dc.subject Approximation theory es
dc.subject Eigenvalues and eigenvectors es
dc.subject Interpolation es
dc.subject Elliptic curve es
dc.subject Vibration es
dc.subject Normal mode es
dc.subject Mathematics es
dc.title Approximation of the vibration modes of a plate by Reissner-Mindlin equations en
dc.type Articulo es
sedici.identifier.other doi:10.1090/s0025-5718-99-01094-7 es
sedici.identifier.issn 0025-5718 es
sedici.creator.person Durán, Ricardo Guillermo es
sedici.creator.person Hervella Nieto, L. es
sedici.creator.person Liberman, Elsa es
sedici.creator.person Rodríguez, Rodolfo es
sedici.creator.person Solomín, Jorge Eduardo es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
mods.originInfo.place Consejo Nacional de Investigaciones Científicas y Técnicas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Mathematics of Computation es
sedici.relation.journalVolumeAndIssue vol. 68, no. 228 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)