Busque entre los 167350 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2021-08-30T17:59:14Z | |
dc.date.available | 2021-08-30T17:59:14Z | |
dc.date.issued | 2003 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/123768 | |
dc.description.abstract | If a and b are trace-class operators, and if u is a partial isometry, then , where ∥⋅∥1 denotes the norm in the trace class. The present paper characterises the cases of equality in this Young inequality, and the characterisation is examined in the context of both the operator and the Hilbert–Schmidt forms of Young's inequality. | en |
dc.format.extent | 727-744 | es |
dc.language | en | es |
dc.subject | Operator inequalities | es |
dc.subject | Norms of matrices | es |
dc.subject | Numerical range | es |
dc.title | Young's inequality in trace-class operators | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1007/s00208-002-0400-y | es |
sedici.identifier.issn | 0025-5831 | es |
sedici.identifier.issn | 1432-1807 | es |
sedici.creator.person | Argerami, Martín | es |
sedici.creator.person | Farenick, Douglas | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Mathematische Annalen | es |
sedici.relation.journalVolumeAndIssue | vol. 325, no. 4 | es |