Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-08-30T17:59:14Z
dc.date.available 2021-08-30T17:59:14Z
dc.date.issued 2003
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/123768
dc.description.abstract If a and b are trace-class operators, and if u is a partial isometry, then , where ∥⋅∥1 denotes the norm in the trace class. The present paper characterises the cases of equality in this Young inequality, and the characterisation is examined in the context of both the operator and the Hilbert–Schmidt forms of Young's inequality. en
dc.format.extent 727-744 es
dc.language en es
dc.subject Operator inequalities es
dc.subject Norms of matrices es
dc.subject Numerical range es
dc.title Young's inequality in trace-class operators en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s00208-002-0400-y es
sedici.identifier.issn 0025-5831 es
sedici.identifier.issn 1432-1807 es
sedici.creator.person Argerami, Martín es
sedici.creator.person Farenick, Douglas es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Mathematische Annalen es
sedici.relation.journalVolumeAndIssue vol. 325, no. 4 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)