Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-09-07T17:41:21Z
dc.date.available 2021-09-07T17:41:21Z
dc.date.issued 2021
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/124331
dc.description.abstract We analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a ∇u) = g , where the coefficient a  = a (x ) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muckenhoupt class A 2 . The analysis developed applies to general mixed finite element spaces satisfying the standard commutative diagram property, whenever some stability and interpolation error estimates are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the family of meshes. For the lowest order case we show that the regularity assumption can be removed and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally we apply the results to a problem arising in the solution of the fractional Laplace equation. en
dc.format.extent S993-S1019 es
dc.language en es
dc.subject Mixed finite elements es
dc.subject Degenerate elliptic problems es
dc.subject Fractional Laplacian es
dc.title Mixed methods for degenerate elliptic problems and application to fractional Laplacian en
dc.type Articulo es
sedici.identifier.other doi:10.1051/m2an/2020068 es
sedici.identifier.issn 0764-583X es
sedici.identifier.issn 1290-3841 es
sedici.creator.person Cejas, María Eugenia es
sedici.creator.person Durán, Ricardo Guillermo es
sedici.creator.person Prieto, Mariana I. es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle ESAIM: Mathematical Modelling and Numerical Analysis es
sedici.relation.journalVolumeAndIssue vol. 55 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)