Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-09-20T12:02:03Z
dc.date.available 2021-09-20T12:02:03Z
dc.date.issued 2021
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/125140
dc.description.abstract Currently, millions of data are generated daily and its exploitation and interpretation has become essential at every scope. However, most of this information is in textual format, lacking the structure and organisation of traditional databases, which represents an enormous challenge to overcome. Over the course of time, different approaches have been proposed for text representation attempting to better capture the semantic of documents. They included classic information retrieval approaches (like Bag of Words) to new approaches based on neural networks such as basic word embeddings, deep learning architectures (LSTMs and CNNs), and contextualized embeddings based on attention mechanisms (Transformers). Unfortunately, most of the available resources supporting those technologies are English-centered. In this work, using an e-mail-based study case, we measure the performance of the three most important machine learning approaches applied to the text classification, in order to verify if new arrivals enhance the results from the Spanish language classification models. en
dc.format.extent 20-24 es
dc.language en es
dc.subject Text Classification es
dc.subject SVM es
dc.subject Word2Vec es
dc.subject LSTM es
dc.subject BERT es
dc.title Classic and recent (neural) approaches to automatic text classification en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-2016-4 es
sedici.title.subtitle A comparative study with e-mails in the Spanish language en
sedici.creator.person Fernández, Juan Manuel es
sedici.creator.person Cavasi, Nicolás es
sedici.creator.person Errecalde, Marcelo Luis es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2021
sedici.relation.event IX Jornadas de Cloud Computing, Big Data & Emerging Topics (Modalidad virtual, 22 al 25 de junio de 2021) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/121564 es
sedici.relation.bookTitle Short papers of the 9th Conference on Cloud Computing Conference, Big Data & Emerging Topics es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)