Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-09-20T12:15:29Z
dc.date.available 2021-09-20T12:15:29Z
dc.date.issued 2021
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/125144
dc.description.abstract Actuarial science seeks to evaluate, predict and manage the impact of future events. Nowadays, the actuary faces the challenge of predicting and managing risks efficiently, with a universe of information growing exponentially in real-time and with a business dynamic that demands constant competitiveness and innovation. The techniques associated with data engineering and data science open a window of tools that seek, through technology, to improve the processes of product design, pricing, reserves and establishment of market niches practically and realistically, considering the pros and cons that brings the availability and constant updating of information, as well as the computational times that this implies. Therefore, this article aims to review the application of Explainable Machine Learning techniques as an alternative to the development of more efficient and practical actuarial models. en
dc.format.extent 29-32 es
dc.language en es
dc.subject Machine learning es
dc.subject Actuarial Models es
dc.subject Explainability es
dc.title The current role of machine learning and explainability in actuarial science en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-2016-4 es
sedici.creator.person Lozano, Catalina es
sedici.creator.person Romero, Francisco P. es
sedici.creator.person Serrano-Guerrero, Jesus es
sedici.creator.person Olivas, Jose A. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2021
sedici.relation.event IX Jornadas de Cloud Computing, Big Data & Emerging Topics (Modalidad virtual, 22 al 25 de junio de 2021) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/121564 es
sedici.relation.bookTitle Short papers of the 9th Conference on Cloud Computing Conference, Big Data & Emerging Topics es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)