Busque entre los 171449 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2021-09-22T12:33:27Z | |
dc.date.available | 2021-09-22T12:33:27Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/125342 | |
dc.description.abstract | Let d=(dj)j∈Im∈Nm be a finite sequence (of dimensions) and α=(αi)i∈In be a sequence of positive numbers (of weights), where Ik={1,…,k} for k∈N. We introduce the (α, d)-designs, i.e., m-tuples Φ=(Fj)j∈Im such that Fj={fij}i∈In is a finite sequence in Cdj, j∈Im, and such that the sequence of non-negative numbers (∥fij∥2)j∈Im forms a partition of αi, i∈In. We characterize the existence of (α, d)-designs with prescribed properties in terms of majorization relations. We show, by means of a finite step algorithm, that there exist (α, d)-designs Φop=(Fopj)j∈Im that are universally optimal; that is, for every convex function φ:[0,∞)→[0,∞), then Φop minimizes the joint convex potential induced by φ among (α, d)-designs, namely $ \sum \limits_{j\in \mathbb I_{m}}\text {P}_{\varphi }(\mathcal F_{j}^{\text {op}})\leq \sum \limits_{j\in \mathbb I_{m}}\text {P}_{\varphi }(\mathcal F_{j}) $ for every (α, d)-design Φ=(Fj)j∈Im, where Pφ(F)=tr(φ(SF)); in particular, Φop minimizes both the joint frame potential and the joint mean square error among (α, d)-designs. We show that in this case, Fopj is a frame for Cdj, for j∈Im. This corresponds to the existence of optimal encoding-decoding schemes for multitasking devices with energy restrictions. | en |
dc.language | en | es |
dc.subject | Frames | es |
dc.subject | Frame designs | es |
dc.subject | Convex potentials | es |
dc.subject | Majorization | es |
dc.title | Optimal frame designs for multitasking devices with weight restrictions | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1007/s10444-020-09762-6 | es |
sedici.identifier.issn | 1019-7168 | es |
sedici.identifier.issn | 1572-9044 | es |
sedici.creator.person | Benac, María José | es |
sedici.creator.person | Massey, Pedro Gustavo | es |
sedici.creator.person | Ruiz, Mariano Andrés | es |
sedici.creator.person | Stojanoff, Demetrio | es |
sedici.subject.materias | Matemática | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Preprint | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Advances in Computational Mathematics | es |
sedici.relation.journalVolumeAndIssue | vol. 46, no. 2 | es |