Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-09-22T12:33:27Z
dc.date.available 2021-09-22T12:33:27Z
dc.date.issued 2020
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/125342
dc.description.abstract Let d=(dj)j∈Im∈Nm be a finite sequence (of dimensions) and α=(αi)i∈In be a sequence of positive numbers (of weights), where Ik={1,…,k} for k∈N. We introduce the (α, d)-designs, i.e., m-tuples Φ=(Fj)j∈Im such that Fj={fij}i∈In is a finite sequence in Cdj, j∈Im, and such that the sequence of non-negative numbers (∥fij∥2)j∈Im forms a partition of αi, i∈In. We characterize the existence of (α, d)-designs with prescribed properties in terms of majorization relations. We show, by means of a finite step algorithm, that there exist (α, d)-designs Φop=(Fopj)j∈Im that are universally optimal; that is, for every convex function φ:[0,∞)→[0,∞), then Φop minimizes the joint convex potential induced by φ among (α, d)-designs, namely $ \sum \limits_{j\in \mathbb I_{m}}\text {P}_{\varphi }(\mathcal F_{j}^{\text {op}})\leq \sum \limits_{j\in \mathbb I_{m}}\text {P}_{\varphi }(\mathcal F_{j}) $ for every (α, d)-design Φ=(Fj)j∈Im, where Pφ(F)=tr(φ(SF)); in particular, Φop minimizes both the joint frame potential and the joint mean square error among (α, d)-designs. We show that in this case, Fopj is a frame for Cdj, for j∈Im. This corresponds to the existence of optimal encoding-decoding schemes for multitasking devices with energy restrictions. en
dc.language en es
dc.subject Frames es
dc.subject Frame designs es
dc.subject Convex potentials es
dc.subject Majorization es
dc.title Optimal frame designs for multitasking devices with weight restrictions en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s10444-020-09762-6 es
sedici.identifier.issn 1019-7168 es
sedici.identifier.issn 1572-9044 es
sedici.creator.person Benac, María José es
sedici.creator.person Massey, Pedro Gustavo es
sedici.creator.person Ruiz, Mariano Andrés es
sedici.creator.person Stojanoff, Demetrio es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Advances in Computational Mathematics es
sedici.relation.journalVolumeAndIssue vol. 46, no. 2 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)