We localize dynamic electrical conductivity changes and reconstruct their time evolution introducing the spatial filtering technique to electrical impedance tomography (EIT). More precisely, we use the unit-noisegain constrained variation of the distortionless-response linearly constrained minimum variance spatial filter.
We address the effects of interference and the use of zero gain constraints. The approach is successfully tested in simulated and real tank phantoms. We compute the position error and resolution to compare the localization performance of the proposed method with the one-step Gauss–Newton reconstruction with Laplacian prior.We also study the effects of sensor position errors. Our results show that EIT spatial filtering is useful for localizing conductivity changes of relatively small size and for estimating their time-courses.
Some potential dynamic EIT applications such as acute ischemic stroke detection and neuronal activity localization may benefit from the higher resolution of spatial filters as compared to conventional tomographic reconstruction algorithms.