Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-02-07T14:49:43Z
dc.date.available 2022-02-07T14:49:43Z
dc.date.issued 2007
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/130601
dc.description.abstract We advance scale-invariance arguments for systems that are governed (or approximated) by a q-Gaussian distribution, i.e., a power law distribution with exponent Q = 1 / ( 1 − q ) ; q ∈ R . The ensuing line of reasoning is then compared with that applying for Gaussian distributions, with emphasis on dimensional considerations. In particular, a Gaussian system may be part of a larger system that is not Gaussian, but, if the larger system is spherically invariant, then it is necessarily Gaussian again. We show that this result extends to q-Gaussian systems via elliptic invariance. The problem of estimating the appropriate value for the Tsallis' parameter q is revisited. A kinetic application is also provided. en
dc.format.extent 370-375 es
dc.language en es
dc.subject Scale invariance es
dc.subject Elliptical invariance es
dc.subject q-Gaussian distributions es
dc.subject Super-statistics es
dc.title Scale invariance and related properties of q-Gaussian systems en
dc.type Articulo es
sedici.identifier.other arXiv:cond-mat/0612393 es
sedici.identifier.other doi:10.1016/j.physleta.2007.02.003 es
sedici.identifier.issn 0375-9601 es
sedici.creator.person Vignat, Christophe es
sedici.creator.person Plastino, Ángel Luis es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Physics Letters A es
sedici.relation.journalVolumeAndIssue vol. 365, no. 5-6 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)