Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-02-14T14:04:04Z
dc.date.available 2022-02-14T14:04:04Z
dc.date.issued 2020-09
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/131013
dc.description.abstract In this paper we give quantitative bounds for the norms of different kinds of singular integral operators on weighted Hardy spaces Hpw, where 0 < p ≤ 1 and w is a weight in the Muckenhoupt A class. We deal with Fourier multiplier operators, Calderon–Zygmund operators of homogeneous type which are particular cases of the first ones, and, more generally, we study singular integrals of convolution type. In order to prove mixed estimates in the setting of weighted Hardy spaces, we need to introduce several characterizations of weighted Hardy spaces by means of square functions, Littlewood–Paley functions and the grand maximal function. We also establish explicit quantitative bounds depending on the weight w when switching between the Hpw-norms defined by the Littlewood–Paley–Stein square function and its discrete version, and also by applying the mixed bound Aq–A result for the vector-valued extension of the Hardy–Littlewood maximal operator given in Buckley (Trans Am Math Soc 340(1):253–272, 1993). en
dc.format.extent 745-766 es
dc.language en es
dc.subject Weighted Hardy spaces es
dc.subject Singular integrals es
dc.subject Mixed estimates es
dc.subject Calderón–Zygmund operators es
dc.subject Fourier multipliers es
dc.title Mixed estimates for singular integrals on weighted Hardy spaces en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s13163-019-00331-0 es
sedici.identifier.issn 1139-1138 es
sedici.identifier.issn 1988-2807 es
sedici.creator.person Cejas, María Eugenia es
sedici.creator.person Dalmasso, Estefanía es
sedici.subject.materias Ciencias Exactas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Revista Matemática Complutense es
sedici.relation.journalVolumeAndIssue vol. 33, no. 3 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)