Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-03-08T16:27:44Z
dc.date.available 2022-03-08T16:27:44Z
dc.date.issued 2004-09
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/132144
dc.description.abstract We study the finite-temperature free energy and fermion number for Dirac fields in a one-dimensional spatial segment, under two different members of the family of local boundary conditions defining a self-adjoint Euclidean Dirac operator in two dimensions. For one of such boundary conditions, compatible with the presence of a spectral asymmetry, we discuss in detail the contribution of this part of the spectrum to the zeta-regularized determinant of the Dirac operator and, thus, to the finite-temperature properties of the theory. en
dc.format.extent 9261-9273 es
dc.language es es
dc.subject Finite-temperature field theory es
dc.subject Functional analysis es
dc.subject Bifurcation theory for PDEs on manifolds es
dc.subject General topics in linear spectral theory for PDEs es
dc.title Finite-temperature properties of the Dirac operator under local boundary conditions en
dc.type Articulo es
sedici.identifier.other arXiv:hep-th/0404115 es
sedici.identifier.other doi:10.1088/0305-4470/37/39/013 es
sedici.identifier.issn 0305-4470 es
sedici.identifier.issn 1361-6447 es
sedici.creator.person Beneventano, Carlota Gabriela es
sedici.creator.person Santángelo, Eve Mariel es
sedici.subject.materias Ciencias Exactas es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Physics A: Mathematical and General es
sedici.relation.journalVolumeAndIssue vol. 37, no. 39 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)