Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-04-07T13:21:14Z
dc.date.available 2022-04-07T13:21:14Z
dc.date.issued 1991
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/134060
dc.description.abstract This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of elliptic problems. We analyze two estimators based on recovery operators for the gradient of the approximate solution. By using superconvergence results we prove their asymptotic exactness under regularity assumptions on the mesh and the solution. One of the estimators can be easily computed in terms of the jumps of the gradient of the finite element approximation. This estimator is equivalent to the error in the energy norm under rather general conditions. However, we show that for the asymptotic exactness, the regularity assumption on the mesh is not merely technical. While doing this, we analyze the relation between superconvergence and asymptotic exactness for some particular examples. en
dc.format.extent 107-127 es
dc.language en es
dc.subject elliptic problems es
dc.subject superconvergence es
dc.subject error estimator es
dc.title On the asymptotic exactness of error estimators for linear triangular finite elements en
dc.type Articulo es
sedici.identifier.other doi:10.1007/bf01385773 es
sedici.identifier.issn 0029-599x es
sedici.identifier.issn 0945-3245 es
sedici.creator.person Durán, Ricardo Guillermo es
sedici.creator.person Muschietti, María Amelia es
sedici.creator.person Rodríguez, Rodolfo es
sedici.subject.materias Ciencias Exactas es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Numerische Mathematik es
sedici.relation.journalVolumeAndIssue vol. 59, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)