Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-07-06T16:22:44Z
dc.date.available 2022-07-06T16:22:44Z
dc.date.issued 1999
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/139036
dc.description.abstract The partial-sum processes, indexed by sets, of a stationary nonuniform φ-mixing random field on the d-dimensional integer lattice are considered. A moment inequality is given from which the convergence of the finite-dimensional distributions to a Brownian motion on the Borel subsets of [0, 1]d is obtained. A Uniform CLT is proved for classes of sets with a metric entropy restriction and applied to certain Gibbs fields. This extends some results of Chen(5) for rectangles. In this case and when the variables are bounded a simpler proof of the uniform CLT is given. en
dc.format.extent 643-660 es
dc.language en es
dc.subject Random fields on integer lattice es
dc.subject partial-sum process es
dc.subject Brownian motion es
dc.subject uniform central limit theorem es
dc.subject nonuniform O-mixing es
dc.subject metric entropy es
dc.subject Gibbs fields es
dc.title On the Central Limit Theorem for Nonuniform φ-Mixing Random Fields en
dc.type Articulo es
sedici.identifier.other doi:10.1023/a:1021619613916 es
sedici.identifier.issn 0894-9840 es
sedici.identifier.issn 1572-9230 es
sedici.creator.person Maltz, Alberto Leonardo es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Theoretical Probability es
sedici.relation.journalVolumeAndIssue vol. 12, no. 3 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)