Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-07-13T16:03:32Z
dc.date.available 2022-07-13T16:03:32Z
dc.date.issued 2008-10-02
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/139459
dc.description.abstract Motivated by an old construction due to J. Kalman that relates distributive lattices and centered Kleene algebras we define the functor K• relating integral residuated lattices with 0 (IRL0) with certain involutive residuated lattices. Our work is also based on the results obtained by Cignoli about an adjunction between Heyting and Nelson algebras, which is an enrichment of the basic adjunction between lattices and Kleene algebras. The lifting of the functor to the category of residuated lattices leads us to study other adjunctions and equivalences. For example, we treat the functor C whose domain is cuRL, the category of involutive residuated lattices M whose unit is fixed by the involution and has a Boolean complement c (the underlying set of CM is the set of elements greater or equal than c). If we restrict to the full subcategory NRL of cuRL of those objects that have a nilpotent c, then C is an equivalence. In fact, CM is isomorphic to CeM, and Ce is adjoint to (_), where (_) assigns to an object A of IRL0 the product A × A0 which is an object of NRL. en
dc.format.extent 93-124 es
dc.language en es
dc.subject residuated lattices es
dc.subject involution es
dc.subject Kalman functor es
dc.title On Some Categories of Involutive Centered Residuated Lattices en
dc.type Articulo es
sedici.identifier.other doi:10.1007/s11225-008-9145-2 es
sedici.identifier.issn 0039-3215 es
sedici.identifier.issn 1572-8730 es
sedici.creator.person Castiglioni, José Luis es
sedici.creator.person Menni, Matías es
sedici.creator.person Sagastume, Marta Susana es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Studia Logica es
sedici.relation.journalVolumeAndIssue vol. 90, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)