Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-08-03T15:39:58Z
dc.date.available 2022-08-03T15:39:58Z
dc.date.issued 1980
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/139838
dc.description.abstract According to a classical result of Weil [15], a divisor α of a smooth n-dimensional projective variety X is homologous to zero if and only if it is the residue of a closed meromorphic 1-form on X. Griffiths proved recently [9, pp. 3-8] that a 0-cycle α of X is homologous to zero if and only if it is the Grothendieck residue of a meromorphic n-form ώ on X having poles in the union of a family of complex hypersurfaces Y1 . . . . . Yn, of X, such that ∩ Yi is 0-dimensional and contains the support of α. We show in this paper (Theorem 3.7) that, in fact, any q-dimensional algebraic cycle α of X, 0≦ q ≦ n, is the analytic residue of a semimeromorphic (n-q)-form ώ on X, having poles in the union of a family F = {Y1 . . . . . Yn-q} of hypersurfaces in X such that ∩ F contains the support of α. en
dc.format.extent 73-87 es
dc.language en es
dc.subject Residual Complex es
dc.subject Poincaré isomorphism es
dc.subject Algebraic Cycles es
dc.title Algebraic Cycles as Residues of Meromorphic Forms en
dc.type Articulo es
sedici.identifier.other doi:10.1007/bf01457886 es
sedici.identifier.issn 0025-5831 es
sedici.identifier.issn 1432-1807 es
sedici.creator.person Coleff, Nicolás es
sedici.creator.person Herrera, M. es
sedici.creator.person Lieberman, D. es
sedici.subject.materias Matemática es
sedici.subject.materias Ciencias Exactas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Mathematische Annalen es
sedici.relation.journalVolumeAndIssue vol. 254, no. 1 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)