Busque entre los 171517 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2022-08-03T15:39:58Z | |
dc.date.available | 2022-08-03T15:39:58Z | |
dc.date.issued | 1980 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/139838 | |
dc.description.abstract | According to a classical result of Weil [15], a divisor α of a smooth n-dimensional projective variety X is homologous to zero if and only if it is the residue of a closed meromorphic 1-form on X. Griffiths proved recently [9, pp. 3-8] that a 0-cycle α of X is homologous to zero if and only if it is the Grothendieck residue of a meromorphic n-form ώ on X having poles in the union of a family of complex hypersurfaces Y1 . . . . . Yn, of X, such that ∩ Yi is 0-dimensional and contains the support of α. We show in this paper (Theorem 3.7) that, in fact, any q-dimensional algebraic cycle α of X, 0≦ q ≦ n, is the analytic residue of a semimeromorphic (n-q)-form ώ on X, having poles in the union of a family F = {Y1 . . . . . Yn-q} of hypersurfaces in X such that ∩ F contains the support of α. | en |
dc.format.extent | 73-87 | es |
dc.language | en | es |
dc.subject | Residual Complex | es |
dc.subject | Poincaré isomorphism | es |
dc.subject | Algebraic Cycles | es |
dc.title | Algebraic Cycles as Residues of Meromorphic Forms | en |
dc.type | Articulo | es |
sedici.identifier.other | doi:10.1007/bf01457886 | es |
sedici.identifier.issn | 0025-5831 | es |
sedici.identifier.issn | 1432-1807 | es |
sedici.creator.person | Coleff, Nicolás | es |
sedici.creator.person | Herrera, M. | es |
sedici.creator.person | Lieberman, D. | es |
sedici.subject.materias | Matemática | es |
sedici.subject.materias | Ciencias Exactas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Ciencias Exactas | es |
sedici.subtype | Articulo | es |
sedici.rights.license | Creative Commons Attribution 4.0 International (CC BY 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
sedici.description.peerReview | peer-review | es |
sedici.relation.journalTitle | Mathematische Annalen | es |
sedici.relation.journalVolumeAndIssue | vol. 254, no. 1 | es |